if we have $f(x) > 0$ and $f'(x) > 0,$ then
$$ \int_{a-1}^{b} \; f(x) \; dx \; < \; \sum_{j=a}^b \; f(j) \; < \; \int_{a}^{b+1} \; f(x) \; dx $$
These are about bounding $f(n)$ above and below by an integral. We do better by integrating the function from $n - \frac{1}{2} $ to
$n + \frac{1}{2} $
Either way, we do better with
$$ \; \sum_{j=a}^b \; g(j) \; \approx \; \int_{a-\frac{1}{2}}^{b+\frac{1}{2} } \; g(x) \; dx $$
As the size of the error depends on the second derivative of $f,$ this comes out better. The second derivative gets small as the argument gets large. A good deal of error occurs ate the beginning, so we may take $a=10,$ for example, and carefully add on the square roots of the numbers from $1$ to $9$
First,
$$ \; \sum_{j=1}^{10000} \; \sqrt j \; \approx \; \int_{1-\frac{1}{2}}^{10000+\frac{1}{2} } \; \sqrt x \; dx $$
Second try,
$$ \; \sum_{j=10}^{10000} \; \sqrt j \; \approx \; \int_{10- \frac{1}{2}}^{10000+\frac{1}{2} } \; \sqrt x \; dx $$
so
$$ \; \sum_{j=1}^{10000} \; \sqrt j \; \approx \; \; \sum_{j=1}^{9} \; \sqrt j \; \; + \; \; \int_{10- \frac{1}{2}}^{10000+\frac{1}{2} } \; \sqrt x \; dx $$