For my research, I have to solve many integrals of the Owen's T function. As such, I am having struggles in calculating the integral $$ \int_{0^{-}}^{t}d{s} \ e^{(t+s)} \ \operatorname{T}\left(\frac{x}{\sqrt{2t}}, \sqrt{\frac{s}{2t-s}}\right). $$ I asked a similar question in [1] for the integral $$ \int_{0^{-}}^{t}d{s} \ \operatorname{T}\left(\frac{x}{\sqrt{2t}}, \sqrt{\frac{s}{2t-s}}\right), $$ which was beautifully answered. Nevertheless, if one follows the same procedure the exponential complicates things. What I have done until know is following [1] which yields \begin{align} f(x,t)=\int_{0^{-}}^{t}d{s} \ e^{(t+s)} \ T\left(\frac{x}{\sqrt{2t}}, \sqrt{\frac{s}{2t-s}}\right)=t\int_{0}^{1} d{u} \ e^{t(1+u)} \ T\left(\sqrt{2}y, \sqrt{\frac{u}{2-u}}\right) \end{align} where we performed the change of variable $s=tu$ and took $y=\frac{x}{2\sqrt{t}}$. Substituting the definition for Owen's T function and using Tonelli theorem gives \begin{align} f(x,t)&= \frac{1}{2\pi}t \int_{0}^{1}d{u}\int_{0}^{\sqrt{\frac{u}{2-u}}}d{v} \ e^{t(1+u)} \ \frac{e^{-y^2(1+v^2)}}{1+v^2}\\ &=\frac{1}{2\pi}t \int_{0}^{1}d{v} \ \int_{\frac{2v^2}{1+v^2}}^{1}d{u} \ e^{t(1+u)} \ \frac{e^{-y^2(1+v^2)}}{1+v^2}\\ &= \frac{1}{2\pi}t \int_{0}^{1} d{v} \ \frac{e^{-y^2(1+v^2)}}{1+v^2}\left(\frac{e^{2 t}}{t}-\frac{e^{\frac{2 t v^2}{v^2+1}+t}}{t}\right)\\ &= \frac{1}{2\pi} e^{2 t}\int_{0}^{1} d{v} \ \frac{e^{-y^2(1+v^2)}}{1+v^2}-\frac{1}{2\pi}e^{t} \int_{0}^{1} d{v} \ \frac{e^{-y^2(1+v^2)}}{1+v^2}e^{\frac{2 t v^2}{v^2+1}}\\ &= T\left(\tfrac{x}{\sqrt{2t}}, 1\right)e^{2 t}+\frac{1}{2\pi} e^{t} \color{blue}{\int_{0}^{1} d{v} \frac{e^{-y^2(1+v^2)}}{1+v^2}e^{\frac{2 t v^2}{v^2+1}}}\\ \end{align} The Owen T term, i.e. the first term, can be written in terms of Error function. However, I am struggling in solving the integral in the second term. I have tried integrate by part, but this just yield a more complicated expression. Someone who knows a way forward?
Also I checked above calculation numerically and it indeed holds up!
In[270]:= ClearAll["Global`*"];
int1[x_, t_]:=OwenT[x/Sqrt[2t],1]*Exp[2t]+1/(2\[Pi])*Exp[t]*NIntegrate[ Exp[-(x/(2Sqrt[t]))^2*(1+v^2)]/(1+v^2)*Exp[(2tv^2)/(1+v^2)], {v,0,1},WorkingPrecision->7] ;
int2[x_, t_]:=NIntegrate[Exp[(t+s)]*OwenT[x/Sqrt[2t],Sqrt[s/(2t-s)]], {s,0,t},WorkingPrecision->7] ;
{x,t}=RandomReal[{0,1},2,WorkingPrecision->50];
int1[x, t]
int2[x, t]
Out[274]= 0.01602865
Out[275]= 0.01603027