Let $a,b,c$ are distinct integers. Then which among the following is the set of possible rank of $$A = \begin{pmatrix} a^2 & b^2 & c^2 \\ a^5 & b^5 & c^5 \\ a^{11} & b^{11} & c^{11} \end{pmatrix} $$
$\{0,1,2,3\}$
$\{1,2,3\}$
$\{2,3\}$
$\{3\}$
My Attempt:
$$A = \begin{pmatrix} a^2 & b^2 & c^2 \\ a^5 & b^5 & c^5 \\ a^{11} & b^{11} & c^{11} \end{pmatrix} $$
Let $$det(A) = det\begin{pmatrix} a^2 & b^2 & c^2 \\ a^5 & b^5 & c^5 \\ a^{11} & b^{11} & c^{11} \end{pmatrix} $$
Taking common $a^2,b^2,c^2$ from $C_1,C_2,C_3$ respectively, we get
$$det(A) = a^2b^2c^2. det\begin{pmatrix} 1 & 1 & 1 \\ a^3 & b^3 & c^3 \\ a^9 & b^9 & c^9 \end{pmatrix} $$
Operating $C_1 \to C_1 - C_2$,$C_2 \to C_2 - C_3$, we get
$$det(A) = a^2b^2c^2. det\begin{pmatrix} 0 & 0 & 1 \\ a^3-b^3 & b^3-c^3 & c^3 \\ a^9-b^9 & b^9-c^9 & c^9 \end{pmatrix} $$ $$det(A) = a^2b^2c^2. det\begin{pmatrix} 0 & 0 & 1 \\ a^3-b^3 & b^3-c^3 & c^3 \\ (a^3-b^3)(a^6+b^6+a^3b^3) &(b^3-c^3)(b^6+c^6+b^3c^3) & c^3 \end{pmatrix} $$
Taking $(a^3-b^3),(b^3-c^3)$ common from $C_1,C_2$ respectively, we get
$$det(A) = a^2b^2c^2(a^3-b^3)(b^3-c^3). det\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & c^3 \\ (a^6+b^6+a^3b^3) &(b^6+c^6+b^3c^3) & c^3 \end{pmatrix} $$
Expanding by $R_1$, we get $det(A) = a^2b^2c^2(a^3-b^3)(b^3-c^3)[-(a^6+b^6+a^3b^3)+(b^6+c^6+b^3c^3)] = a^2b^2c^2(a^3-b^3)(b^3-c^3)[(c^6-a^6)+b^3(c^3-a^3)] = a^2b^2c^2(a^3-b^3)(b^3-c^3)[((c^3)^2-(a^3)^2)+b^3(c^3-a^3)] = a^2b^2c^2(a^3-b^3)(b^3-c^3)[(c^3-a^3)(c^3+a^3)+b^3(c^3-a^3)] = a^2b^2c^2(a^3-b^3)(b^3-c^3)(c^3-a^3)(a^3+b^3+c^3)$
If $a \neq b \neq c$ then Rank of $A$ may be $3$. I could not determine other possibility of ranks. Please help me.