There are 2 more applications I could think of with graphical proof. The Inverse Function Integral theorem is key here. $B_y$ the way, this notation is the y-th Bernoulli number:
What is the solution to this peculiar Integral: $\int \tan \left(\frac 1 x\right) \, dx$?
As a consequence of the inverse. Be careful when evaluating from a to b as to not put the $x^{2-2n}$ in the denominator. Simplified graph:
$$\mathrm{\int tan\left(\frac 1x\right)dx=\int\frac{dx}{e^\frac{i}{x}-i}-\int\frac{dx}{e^\frac{i}{x}+i}-ix=C+x\,tan\left(\frac1x\right)-T \left(tan\left(\frac1x\right)\right)}$$
$$\mathrm{t(x)\mathop=^{def}\int tan\left(\frac 1x\right)dx=C+x\, tan\left(\frac 1x\right)-\frac{tan\left(\frac 1x\right)}{tan^{-1}\left(tan\left(\frac 1x\right)\right)}-ln\left(tan^{-1}\left(tan\left(\frac 1x\right)\right)\right)+ \frac12 \sum_{n=2}^\infty\frac{(-4)^n\left(4^n-1\right)B_{2n} \left(\tan^{-1}(tan\left(\frac 1x\right))\right)^{2(n-1)}}{(n-1)(2n)!}= C+x\, tan\left(\frac 1x\right)-\frac{tan\left(\frac 1x\right)}{tan^{-1}\left(tan\left(\frac 1x\right)\right)}-ln\left(tan^{-1}\left(tan\left(\frac 1x\right)\right)\right)+ \frac{4}{\pi^2}\sum_{n\in \Bbb Z}\frac{ln\left|\pi(2n+1)-2tan^{-1}\left(tan\left(\frac 1x\right)\right)\right|}{(2n+1)^2}}$$
$$\mathrm{t(x)=\int tan\left(\frac1x\right)dx=C+ln(x)+\frac12\sum_{n=2}^\infty \frac{(-4)^n (4^n-1) B_{2n}x^{2-2n}}{(2n)!(n-1)}}$$
It was shown by @Jack D’Aurizio that:
$$ \int\tan\left(\frac{1}{x}\right)\,dx =C+\sum_{m\geq 0}\frac{4}{\pi^2(2m+1)^2}\log\left[(2m+1)^2\pi^2 x^2-4\right]$$
in this post:
Integral of $\tan(1/x)$
The hyperbolic version has a similar graph, hence the similar integral. Be careful when evaluating the integral to not put the $b^{-2(n-1)}-a^{-2(n-1)} $ part in the denominator as it is not the same as $\frac{1}{b^{2(n-1)}-a^{2(n-1)} }$
$$\mathrm{th(x)\mathop=^{def}\int tanh\left(\frac1x\right)dx=x+i\int\frac{dx}{e^\frac1 x-i}+\ int\frac{dx}{e^\frac1 x+i} =x\, tanh\left(\frac1x\right)-Th\left(tanh\left(\frac1x\right)\right)= C+ln(x)+\frac12\sum_{n=2}^\infty\frac{4^n\left(4^n-1\right)B_{2n} x^{-2(n-1)}}{(2n)!(n-1)}}$$
It can also be shown that t(x)=th(ix) and th(-ix)=t(x) as a consequence of being the same identity for their inverse integrand functions resulting in this graph:
$$\mathrm{th(x)= C+\frac{4}{\pi^2}\sum_{n=0}^\infty \frac{ln\left(\pi^2(2n+1)^2x^2+4\right)}{(2n+1)^2}}$$
More on t(x) and th(x):
We can understand that the following holds because of the inverse function theorem and definitions of the four functions related to:
$$\mathrm{-i\,tan^{-1}(ix)=tanh^{-1}(x)\implies -i\,tanh^{-1}(x)=tan^{-1}(x)}$$
Using this knowledge, a bit of algebra, substitution, and already derived inverse integral function theorem definitions, here are the definitions of the functions in terms of one another:
$$\mathrm{T(ix)=Th(x)\implies Th(-ix)=T(x)}$$
$$\mathrm{t(ix)=th(x)\implies th(-ix)=t(x)}$$
$$\mathrm{t(x)= x\,tan\left(\frac1x\right)-T\left(tan\left(\frac1x\right)\right)= x\,tan\left(\frac1x\right)-Th\left(tanh\left(\frac1{-ix}\right)\right)}$$
$$\mathrm{th(x)=x\,tanh\left(\frac1x\right)-Th\left(tanh\left(\frac1x\right)\right)= x\,tanh\left(\frac1x\right)-T\left(tan\left(\frac1{ix}\right)\right)}$$
$$\mathrm{T(x)=\frac{x}{tan^{-1}(x)}-t\left(\frac{1}{tan^{-1}(x)}\right)= \frac{x}{tan^{-1}(x)}-th\left(\frac{1}{tanh^{-1}(-ix)}\right)}$$
$$\mathrm{Th(x)=\frac{x}{tanh^{-1}(x)}-th\left(\frac{1}{tanh^{-1}(x)}\right)= \frac{x}{tanh^{-1}(x)}-t\left(\frac{1}{tan^{-1}(ix)}\right)}$$
There is also a connection to $\mathrm{\int\frac{dx}{cot^{-1}(x)}\ and \ \int\frac{dx}{coth^{-1}(x)}}$, but it is cumbersome to get in terms of T(x). A similar technique to its derivation can be used to find the following result as seen in this graph demo. Note there are other ways to evaluate the integrals, but these are irrelevant for now. The new “name” should not be confused with the fresnel cosine integral. Also note we can easily find $\mathrm{\int cot\left(\frac1x\right)dx\ and\ \int coth\left(\frac1x\right)dx}$ using the aforementioned inverse function integral theorem:
$$\mathrm{C(x)\mathop=^{def} \int \frac{dx}{cot^{-1}(x)} =C+\frac{x}{cot^{-1}(x)}-\frac{1}{2\left(cot^{-1}(x)\right)^2}-\frac13 ln\left(cot^{-1}(x)\right)+\frac12\sum_{n=2}^\infty\frac{(-4)^n B_{2n} \left(cot^{-1}(x)\right)^{2(n-1)}}{(n-1)(2n)!}}$$
$$\mathrm{Ch(x)\mathop=^{def}\int \frac{dx}{coth^{-1}(x)}=C+\frac{x}{coth^{-1}(x)}-\frac{1}{2\left(coth^{-1}(x)\right)^2}-\frac13 ln\left(coth^{-1}(x)\right)+\frac12\sum_{n=2}^\infty\frac{(-4)^n B_{2n} \left(coth^{-1}(x)\right)^{2(n-1)}}{(n-1)(2n)!}}$$
$$\mathrm{C\left(\frac1x \right)+T(x)=C+\frac{1}{tan^{-1}(x)}\left(\frac1x+x\right)-\frac{1}{2\left(tan^{-1}(x)\right)^2}+\frac23 ln\left(tanh^{-1}(x)\right)+\frac12 \sum_{n=2}^\infty\frac{(-4)^{2n}B_{2n}\left(tan^{-1}(x)\right)^{2n-2}}{(n-1)(2n)!}}$$
$$\mathrm{Ch\left(\frac1x \right)+Th(x)=C+\frac{1}{tanh^{-1}(x)}\left(\frac1x+x\right)+\frac{1}{2\left(tanh^{-1}(x)\right)^2}+\frac23 ln\left(tanh^{-1}(x)\right)-\frac12 \sum_{n=2}^\infty\frac{4^{2n}B_{2n}\left(tanh^{-1}(x)\right)^{2n-2}}{(n-1)(2n)!}}$$
I wonder about the integral of the reciprocal argumented (co)secant and reciprocal inverse (co)secant formulas. What about the inverses, like $\mathrm {T^{-1}(x)\ and\ th^{-1}(x)}$? Please correct me and give me feedback!
I think that going the other way around, beginning with an non-elementary and trying the look for applications will result in artificial examples.
– jjagmath Aug 04 '21 at 20:45