Don't worry, this question just requires one to know a 'trick'
$$f(x) = \ln \left[ \arcsin(x^4) + \cos(x) \right]$$
We see that when $x=0$, the function inside log becomes a one, now we can manipulate the above as:
$$ f(x) = \ln \left[ 1+ \underbrace{[ \cos x + \arcsin(x^4) - 1 ]}\right]=\left[ \cos x + \arcsin(x^4) - 1 \right] - \frac{1}{2} \left[ \cos x + \arcsin(x^4) - 1 \right]^2...$$
Notice that the underbraced term is some small quantity in $h$ , near zero , so I applied the $\log(1+x)$ expansion. Now, consider the maclaurain of the quantity:
$$ g(x) = \cos(x) + \arcsin(x^4)-1$$
We can expand the above expansion from the standard expansions till the fourth order:
$$ g(x) = -\frac{x^2}{2!} + x^4( 1 + \frac{1}{4!}) +O(x^5)$$
Upon substitution into $f(x)$ we find,
$$ f(x) = - \left[ \frac{x^2}{2!} - x^4 (1 + \frac{1}{4!})\right]- \left[\frac12 \frac{x^4}{2!^2}\right] + O(x^6)$$
Now what you gotta do is, compare the coefficients of the powers in $x$ with the standard maclaurin coefficient for $f$, i.e: for $x^k$, it is $\frac{d^k f(x)}{dx^k}|_0 \frac{1}{k!}$