Does there exist $\ n,m\in\mathbb{N}\ $ such that $\ \left\lvert \left(\frac{3}{2}\right)^n - 2^m \right\rvert < \frac{1}{4}\ $ ?
I have tried for the first few integers $\ n,m\ $ up until $\ m\approx30\ $ with no $\ n,m\ $ satisfying the inequality. However, I can't think of techniques for trying to prove it False. So I'm stuck.
Edit: To be honest, I'm not even sure, for example, how to try to find $\ p,q\in\mathbb{N}_{\geq 2}\ $ such that $\ \lvert 5^p - 7^q \rvert < 10,\ $ which might be an easier type of problem (or harder? I'm not sure...).
Edit:
$$\left(\frac{3}{2}\right)^n - 2^m = \left(\left(\frac{3}{2}\right)^{n/m}\right)^m - 2^m = \left(\left(\frac{3}{2}\right)^{n/m} - 2 \right)\left( \left(\left(\frac{3}{2}\right)^{n/m} \right)^{m-1} + \left(\left(\frac{3}{2}\right)^{n/m} \right)^{m-2} \cdot 2 + \left(\left(\frac{3}{2}\right)^{n/m} \right)^{m-3} \cdot 2^2 + \ldots + \left(\left(\frac{3}{2}\right)^{n/m} \right)^{2} \cdot 2^{m-3} + \left(\left(\frac{3}{2}\right)^{n/m} \right) \cdot 2^{m-2} + \left(\left(\frac{3}{2}\right)^{n/m} \right) \cdot 2^{m-1} \right). $$
Since $\left(\frac{3}{2}\right)^{n/m}\ $ is close to $\ 2,\ $ we therefore have:
$$\left(\frac{3}{2}\right)^n - 2^m \approx \left(\left(\frac{3}{2}\right)^{n/m} - 2 \right)\left( 2^{m-1} +2^{m-2} \cdot 2 + 2^{m-3} \cdot 2^2 + \ldots +2^2 \cdot 2^{m-3} +2 \cdot 2^{m-2} + 2 \cdot 2^{m-1} \right) = \left(\left(\frac{3}{2}\right)^{n/m} - 2 \right)\cdot m \cdot 2^{m-1}.$$
I'm not sure if this helps, but maybe it relates to mjqxxxx's answer. Maybe this is what he/she means by "where "very close" means exponentially close as a function of that rational's denominator".
Edit: This is an open problem in number theory, so perhaps this means the question here is also an open problem?