This is excercise 3.6.7 from Arfken. From the exercise just before we have: $$\bf \nabla(A\cdot B)=(A\times\nabla)\times B+(B\times\nabla)\times A+A(\nabla\cdot B)+B(\nabla\cdot A)$$ So with $\bf B=A$, we have: $$\bf \nabla(A\cdot A)=(A\times\nabla)\times A+(A\times\nabla)\times A+A(\nabla\cdot A)+A(\nabla\cdot A)$$ $$\bf \frac{1}{2} \nabla(A\cdot A)=(A\times\nabla)\times A+A(\nabla\cdot A)$$ $$\bf \frac{1}{2} \nabla(A\cdot A)-A(\nabla\cdot A)=(A\times\nabla)\times A$$
I am having difficulties with with getting from the last equality to the desired form, any help is appreciated.