I recently came across a problem that asked whether, as the title says, a 5cm straight line has more points on it than a 3cm straight line.
(Note: All lines considered here are straight lines even if not explicitly mentioned everywhere)
My way of solving it was to consider the 3cm line superimposed on the 5cm line. Then, every point on the 3cm line would lie on a point on the 5cm line, but there would still be some points on the 5cm line that aren't covered. And this would be true no matter how you superimposed the 3cm line. So, the 5cm line must have more points.
However, another proof I saw made use of constructing a triangle with the 5cm straightline acting as its base. The 3cm line was then drawn parallel to the 5cm base inside the triangle, such that it's each of its endpoints were on the other 2 sides of the triangle. This proof claimed that a line could be drawn to the vertex opposite to the base from every point on the 5cm base and that each of these lines would have to pass through the 3cm line. And so, every point on the 5cm line has a corresponding line on the 3cm line, implying that both lines had same number of points on them.
Now I know that both these answers can't be correct, but I just can't find fault in either proof. So, my question is which of these proofs is correct and most importantly, why?
Thank you!