$\displaystyle\frac{d(x,z)}{1+d(x,z)}-\frac{d(x,y)}{1+d(x,y)}=\frac{(d(x,z)-d(x,y))}{(1+(d(x,z))(1+d(x,y))}$
We havefrom $\Delta $ inequality,
$(1+(d(x,z))(1+d(x,y))\ge1+d(x,z)+d(x,y)\ge 1+d(y,z)\tag 1$
And we have from $\Delta $ inequality $d(x,z)-d(x,y)\le d(y,z)\tag 2$
And as $1+d(y,z)\ne 0$ we have $\displaystyle\frac{1}{1+d(y,z)}\ge \frac{1}{(1+d(x,z))(1+d(x,y))}$ from $(1)$
Multiplying $(2) $ and $(1)$ we have
$$\frac{d(x,z)}{1+d(x,z)}-\frac{d(x,y)}{1+d(x,y)}=\frac{(d(x,z)-d(x,y))}{(1+(d(x,z))(1+d(x,y))}\le \frac{d(y,z)}{1+d(y,z)}$$
$$\Rightarrow \frac{d(x,z)}{1+d(x,z)}-\frac{d(x,y)}{1+d(x,y)}\le \frac{d(y,z)}{1+d(y,z)}$$
$$\Rightarrow \frac{d(x,z)}{1+d(x,z)}\le \frac{d(x,y)}{1+d(x,y)}+ \frac{d(y,z)}{1+d(y,z)}$$