Consider the element $a=\sqrt{2}+\sqrt{3}\in\mathbb{R}$. Calculate $irr(a,\mathbb{Q})$.
What I did:
Calculate powers of $a$. $a^2=5+2\sqrt{6},a^3=11\sqrt{2}+9\sqrt{3},a^4=49+20\sqrt{6}$. I wish to find some relationships between powers of $a$, but I have no idea where to begin. I believe there should be a better way than just trial-and-error.
It is shown in the hint that we need to consider vectors $v_0=(1,0,0,0), v_1=(0,1,1,0), v_2=(5,0,0,2),v_3=(0,11,9,0), v_4=(49,0,0,20)$, but I have no clue how to use the given hints and how can we even use vectors in our problem.
Thanks in advance for the helps!
Edit:
I have made some attempt and I observed that $v_4=-v_0+10v_2$ and by following the pattern (a very naive way) to replace $v_4$ by $a^4$, $v_2$ by $a^2$ and $v_0$ by 1, I got $a^4-10a^2+1=0$.
Is this progress useful in solving the problem? Is the "pattern" just a coincidence or is there any explanation to it? How can then I proceed in finding $irr(a,\mathbb{Q})$?