Consider the following sum, known as Ramanujan's Q-function:
$$\begin{align} Q(m) &= 1 + \frac{m-1}{m} + \frac{(m-1)(m-2)}{m^2} + \cdots + \frac{(m-1)(m-2) \cdots 1}{m^{m-1}} \\ &= \sum_{n \ge 0} \binom{m-1}{n}\frac{n!}{m^n} = \sum_{n \ge 0} \frac{(m-1)!}{(m-n-1)! m^n} \end{align} $$
It arises in the study of hashing algorithms and the birthday problem, and is related to (is less by $1$ than) the expected time until the first collision.
It is known to have the asymptotic expansion
$$Q(m) \sim \sqrt{\frac{\pi m}{2}} - \frac{1}{3} + \frac{1}{12}\sqrt{\frac{\pi}{2m}} - \frac{4}{135m} + \dots$$
and so we can say that
$$ \lim_{m\to\infty} \frac{Q(m)}{\sqrt{m}} = \sqrt{\frac{\pi}{2}}.$$
The paper "On Ramanujan's Q-function" by Philippe Flajolet et al, gives a proof, and I guess the methods at the answers to this question will work.
When analyzing the expected time until the second collision in an answer to another question here, I came up with a similar sum which I'll call $Q_2(m)$:
$$\begin{align} Q_2(m) &= 1 + \frac{m-1}{m} + \frac{(m-1)(m-2)}{m^2} + \frac{(m-1)(m-2)(m-3)}{m^3} + \dots \\ &\phantom{=1} + \frac{1}{m} + 3\frac{(m-1)}{m^2} + 6\frac{(m-1)(m-2)}{m^3} + \dots\\ &= \sum_{n \ge 0} \binom{m-1}{n} \frac{n!}{m^n} + \binom{n+1}{2}\binom{m-1}{n-1}\frac{(n-1)!}{m^n} \\ &= \sum_{n \ge 0} \left(\frac{(m-1)!}{(m-n-1)!} + \frac{(n+1)n (m-1)!}{2(m-n)!}\right) \frac1{m^n} \end{align} $$
We can prove that $Q(m) < Q_2(m) < 2Q(m)$, so $Q_2(m)$ is also asymptotically of the order of $\sqrt{m}$, i.e., $\displaystyle \lim_{m \to \infty} \frac{Q_2(m)}{\sqrt{m}} = c$ for some constant $c$ satisfying $\sqrt{\frac{\pi}{2}} < c < \sqrt{2\pi}$.
A computer evaluation of this sum for increasingly large $m$ (I tried powers of $2$ up to $2^{38}$) gave the following values (of $Q_2'(m) = Q_2(m) + 1$ actually, but that shouldn't matter as both will have the same asymptotics):
log_2(m) Q_2'(m) Q_2'(m)/sqrt(m)
1 3.750000 2.651650
2 4.828125 2.414062
3 6.367527 2.251261
4 8.556387 2.139097
5 11.661068 2.061405
6 16.058672 2.007334
7 22.282951 1.969553
8 31.089159 1.943072
9 43.545730 1.924468
10 61.163931 1.911373
11 86.081225 1.902144
12 121.320594 1.895634
13 171.157295 1.891039
14 241.637536 1.887793
15 341.312003 1.885500
16 482.273240 1.883880
17 681.622711 1.882735
18 963.545563 1.881925
19 1362.244774 1.881353
20 1926.090668 1.880948
21 2723.489223 1.880662
22 3851.181106 1.880460
23 5445.978284 1.880316
24 7701.362098 1.880215
25 10890.956487 1.880144
26 15401.724138 1.880093
27 21780.912933 1.880058
28 30802.448248 1.880032
29 43560.825847 1.880014
30 61603.896482 1.880002
31 87120.651683 1.879993
32 123206.792957 1.879986
33 174240.303361 1.879982
34 246412.585911 1.879979
35 348479.606720 1.879977
36 492824.171819 1.879975
37 696958.213438 1.879974
38 985647.343638 1.879973
This suggests that the constant $c \approx 1.87997$, and, trying out numbers of a form similar to the $\sqrt{\frac{\pi}{2}}$ we have for $Q(m)$, I noticed that $\sqrt{\frac{9\pi}{8}} = 1.8799712\dots$.
My questions:
Is it true (can we prove) that $$c = \lim_{m \to \infty} \frac{Q_2(m)}{\sqrt{m}} = \sqrt{\frac{9\pi}{8}}$$ exactly?
If not, is there a closed form for the limit $c$?