Let $n\in\Bbb N$ and $x>0$. Prove Prove that $n\ln\left (\dfrac{1+nx}{nx}\right )<1/x$.
Try: Trying to play with inequality. $$\begin{align*}\ln\left (\dfrac{1+nx}{nx}\right )<1/(nx)&\Rightarrow \dfrac{1+nx}{nx}<e^{1/(nx)}\\ &\Rightarrow 1+nx<nx\cdot e^{1/(nx)} \end{align*}$$ Let $u=nx$, then $1+u<ue^{1/u}$. Any help, after that?