The end of the answer by Jack D'Aurizio gives the most elementary solution I see.
So let me explain it in more detail here. We use properties of $$\newcommand{\Li}{\operatorname{Li}_2}\newcommand{\substeq}[1]{\underset{#1}{\phantom{\big[}=\phantom{\big]}}}\Li(z)=-\int_0^z\frac{\log(1-t)}{t}\,dt\qquad(z\leqslant 1)\tag{1}\label{dilogdef}$$ (let's restrict the domain to the reals). Namely, the identity $$\Li(1-z)+\Li(1-z^{-1})=-\frac12\log^2 z\qquad(z>0)\tag{2}\label{diloghard}$$ is obtained from the definition \eqref{dilogdef} using substitutions: $$\Li(1-z)\substeq{t=1-x}-\int_z^1\frac{\log x}{1-x}\,dx,\quad\Li(1-z^{-1})\substeq{t=1-x^{-1}}\int_z^1\frac{\log x}{x(1-x)}\,dx$$ (added, these give $\int_z^1\frac{\log x}{x}\,dx$). Similarly, we have the identity $$\Li(z)+\Li(-z)=\frac12\Li(z^2)\qquad(|z|\leqslant 1)\tag{3}\label{dilogeasy}$$ and the power series [obtained from the one for $\log(1-t)$] $$\Li(z)=\sum_{k=1}^\infty\frac{z^k}{k^2}.\qquad(|z|\leqslant 1)\tag{4}\label{dilogseries}$$
In particular, $\Li(1)=\zeta(2)\color{gray}{[{}=\pi^2/6]}$. Now, starting with \eqref{diloghard} at $z=1+n^{-1}$, we get
\begin{align*}
\sum_{n=1}^\infty\log^2\left(1+\frac1n\right)&=-2\sum_{n=1}^\infty\left[\Li\left(-\frac1n\right)+\Li\left(\frac1{n+1}\right)\right]
\\\color{gray}{[\text{reindex terms}]}\quad&=2\Li(1)-2\sum_{n=1}^\infty\left[\Li\left(-\frac1n\right)+\Li\left(\frac1n\right)\right]
\\\color{gray}{[\eqref{dilogeasy}\text{ at }z=n^{-1}]}\quad&=2\zeta(2)-\sum_{n=1}^\infty\Li\left(\frac1{n^2}\right)
\\\color{gray}{[\eqref{dilogseries}\text{ at }z=n^{-2}]}\quad&=2\zeta(2)-\sum_{n=1}^\infty\sum_{k=1}^\infty\frac1{k^2 n^{2k}}
\\\color{gray}{[\text{sum over }n]}\quad&=2\zeta(2)-\sum_{k=1}^\infty\frac{\zeta(2k)}{k^2}.
\end{align*}