If the dot product is defined as below, how can it be proven that it is distributive over addition?
$$ \mathbf{u} \cdot \mathbf{v} = \frac{1}{2}\bigg(\Vert \mathbf{u} \Vert^2 + \Vert \mathbf{v} \Vert^2 - \Vert \mathbf{u} - \mathbf{v} \Vert^2\bigg) $$
I tried using the polarization identity and using the fact that
$$ \left\{ \begin{array}{c} - \mathbf{u} + \mathbf{v_1} + \mathbf{v_2} = \bigg(\mathbf{v_1} - \frac{1}{2}\mathbf{u}\bigg) + \bigg(\mathbf{v_2} - \frac{1}{2}\mathbf{u}\bigg) \\ \quad \mathbf{u} + \mathbf{v_1} + \mathbf{v_2} = \bigg(\mathbf{v_1} + \frac{1}{2}\mathbf{u}\bigg) + \bigg(\mathbf{v_2} + \frac{1}{2}\mathbf{u}\bigg) \end{array} \right. $$
But still couldn't figure out how to prove it.