a) Show that $f(x)=x^6-2x^3-10$ is irreducible over $\mathbb{Q}$.
Proof: Using Eisenstein's Criterion, with $p=2$, we show $f(x)$ is irreducible over $\mathbb{Q}$.
b) Let $\alpha=\sqrt[3]{1+\sqrt{11}}$. Show that $|\mathbb{Q}(\alpha):\mathbb{Q}|=6$.
Proof: Note that $\alpha$ is a root of $f(x)$. By part (a), we can conclude that $f(x)$ is the minimal polynomial of $\mathbb{Q}(\alpha)$. Furthermore $|\mathbb{Q}(\alpha):\mathbb{Q}|=6$.
c) Show that $K=\mathbb{Q}(\alpha,\sqrt{-3},\sqrt[3]{10})$ is a splitting field for $f(x)$.
Proof: Note that $\beta=\sqrt[3]{1-\sqrt{11}}$ is also a root of $f(x)$. [Check by plugging it in $f(x)$.] $$ \alpha \cdot \beta = \sqrt[3]{(1-\sqrt{11})(1-\sqrt{11})} = \sqrt[3]{-10} $$
- How do I get rid of the negative in my radical? Recall $\sqrt[3]{-1}=-1$.
- What combination will help me get $\sqrt{-3}$? Refer to: Determine splitting field $K$ over $\mathbb{Q}$ of the polynomial $x^3 - 2$
d) Show that $\sqrt[3]{10}\not\in \mathbb{Q}(\sqrt{-3},\sqrt{11})$ and conclude that $|L:\mathbb{Q}|=12$, where $L=\mathbb{Q}(\sqrt{-3},\sqrt{11},\sqrt[3]{10})$. Moreover $K=L(\alpha)$ and thus $|K:\mathbb{Q}|=12$ or $36$.
- How do I show $\sqrt[3]{10}\not\in \mathbb{Q}(\sqrt{-3},\sqrt{11})$?
- Since the corresponding minimal polynomials of $\sqrt{-3},\sqrt{11},\sqrt[3]{10}$ have degree $2,2,3$, respectively, and share no roots, $|L:\mathbb{Q}|=12$.
- $L(\alpha)= \mathbb{Q}(\sqrt{-3},\sqrt{11},\sqrt[3]{10})(\alpha)$. Does $\alpha$ get consumed by $\sqrt[3]{10}$ from what we shown in part (c) and the first part in (d)? Is this how we get $K=L(\alpha)$?
- How can $|K:\mathbb{Q}|=36$?