First lets prove that $g$ is integrable on $[a,b].$
$g$ is bounded because $f$ is bounded.
Assume, without loss of generality, that $a\leq s_1 < s_2 < \cdots <s_k \leq b$.
We will take a look on the first Interval which is: $[a,s_1]$ if $a<s_1$ or $[s_1,s_2]$ if $a=s_1$, so let assume that $a<s_1$.
Note that $f\in R\left[a,s_{1}\right]$ because $f\in R\left[a,b\right]$ and $[a,s_1]\subseteq[a,b]$. In addition, $\forall \,a<x<s_1\,\,\,g|_{[a,x]}=f|_{[a,x]} \text{ and } g\in R[a,x].$
Now, let $\epsilon>0$.
Define $x=s_1-\frac{\epsilon}{2\omega(g,[a,s_1])}$, $\omega(g,[a,s_1])= \sup\limits_{j\in[a,s_1]} g(j)- \inf\limits_{j\in[a,s_1]} g(j).$
Because $g\in R[a,x]$,by Riemann integral definition, there is partition $\pi_{1}$ of $\left[a,x\right]$ such that: $\omega\left(g|_{\left[a,x\right]},\pi_{1}\right)<\frac{\epsilon}{2}$, $\pi_1=\{ a = x_0 < x_1 < \cdots < x_n = x \}, \omega (g|_{[a,x]}, \pi_1) = \sum_{i=1}^n \omega(g,[x_{i-1},x_i]) \cdot\Delta x_{i}.$
Now take partition $\pi=\pi_{1}\cup\left\{ s_{1}\right\} $.
You get:
$$\omega\left(g|_{\left[a,s_{1}\right]},\pi\right)=\omega\left(g|_{\left[a,x\right]},\pi_{1}\right)+\frac{\epsilon}{2\omega\left(g,\left[a,s_{1}\right]\right)}\omega\left(g,\left[x,s_{1}\right]\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$
So by definition, $g\in R[a,s_1].$
In the exact same way you can show that $g\in R[s_i,s_{i+1}, \, g \in R[s_n,b]$. So $g\in R[a,b]$.
Now The fact that $\int_a^b g=\int_a^b f$ is immediately from linearity of the integral.