Is it true that $\forall x>3, \exists y<x$ and $\exists z>x$ such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 ?$
Here is my proof but I am stuck in the middle. And I am also wondering if I am on the right track?
Let $y = x - a$ for some real number $a$ that $a>0$, and $z = x + b$ for some real number $b$ that $b>0$.
Then $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \Rightarrow \frac{1}{x}+\frac{1}{x-a}+\frac{1}{x+b}=1.$
After combining similar terms, I got:
$a = \frac{x(x^2+bx-3x-2b)}{x^2+(b-2)x-b}$, and $b = \frac{x(x^2-ax-3x+2a)}{-x^2+(a+2)x-a}$
For $a$ exist, $x^2+(b-2)x-b \neq 0$. And for $b$ exist, $-x^2+(a+2)x-a \neq 0$.
Let $f(x) = x^2+(b-2)x-b $ and $g(x) = -x^2+(a+2)x-a $.
By the formula of quadratic function: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$:
$f(x)\neq 0$ $\Rightarrow (b-2)^2+4b < 0$ ,and $g(x)\neq 0\Rightarrow(a+2)^2-4a<0$.
Since $(b-2)^2+4b \geq 0$,and $(a+2)^2-4a\geq0$ , no matter how we choose $a$ and $b$, $f(x)=0$ and $g(x)=0$ always have a solution.
Then I stuck at here, I understand that I need to prove $f(x)\neq0$ and $g(x)\neq0$ for all $x >3$ and $a,b$ have to be positive to make the statement true. Otherwise, it's false. Really hope to get some hints/help!! Thank you!