We know that $\sum\limits_{k = 0}^{2n + 1} \binom{2n+1}{k} = 2^{2n + 1}$.
We also know that $\sum\limits_{k = 0}^n \binom{2n + 1}{k} = \sum\limits_{k = n + 1}^{2n + 1} \binom{2n + 1}{2n + 1 - k}$ (this is by taking the map $k \mapsto 2n + 1 - k$).
And we also have $\binom{n}{k} = \binom{n}{n - k}$ for all $n$, $k$, so in particular, we have $\sum\limits_{k = n + 1}^{2n + 1} \binom{2n + 1}{2n + 1 - k} = \sum\limits_{k = n + 1}^{2n + 1} \binom{2n + 1}{k}$.
This gives us $$\begin{align}2^{2n + 1} &= \sum\limits_{k = 0}^{2n + 1} \binom{2n+1}{k} \\&= \sum\limits_{k = 0}^n \binom{2n + 1}{k} + \sum\limits_{k = n + 1}^{2n + 1} \binom{2n + 1}{k} \\&= 2 \cdot \sum\limits_{k = 0}^n \binom{2n + 1}{k}.\end{align}$$
Therefore, $$\sum\limits_{k = 0}^n \binom{2n + 1}{k} = 2^{2n} = 4^n.$$