Is $e^{qz}=(e^z)^q$ true with $z$ complex and $q\in\mathbb{Q}$?
I've already proved it for $n\in\mathbb{Z}$, but what about for $q\in\mathbb{Q}$? Is it true?
My proof for $n\in\mathbb{Z}$: \begin{equation*} \begin{aligned} (e^z)^n=(e^xe^{iy})^n&=(e^x(\cos(y)+i\sin(y)))^n\\ &=e^{nx}(\cos(y)+i\sin(y))^n\\ &\overset{{\star}}{=}e^{nx}(\cos(ny)+i\sin(ny))\\ &=e^{nx}e^{iny}=e^{n(x+iy)}\\ &=e^{nz}. \end{aligned} \end{equation*} $\star$ By Moivre's Theorem for $|z|=1$.