Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying $f(x)= f\left(\frac{x}{1-x}\right) \ \forall x \neq 1$. If $f$ is continuous at $0$ then find all possible $f$.
My approach :
If $f(x)= f\left(\frac{x}{1-x}\right)$ then $$\displaystyle f\left(\frac{x}{1-x}\right) = f\left(\frac{x}{1-x} \left(1-\frac{x}{1-x} \right)^{-1}\right)=f \left(\frac{x}{1-2x} \right)$$
On successively doing this, we will get $f(x) = f\left(\frac{x}{1-nx}\right)$.
Taking limit both sides as $n \to \infty$, we will get $f(x)=f(0)$ .This implies $f(x)=f(0)$ for all $x$. Thus $f(x)$ is a constant function. Lot of people pointed out about $f(1)$, can someone help me with this? Can I define $f(1) = a$ for any $a \in \mathbb R$ and then $f(x) = f(0)$ for all $x \in \mathbb{R} \setminus \left\{ 1 \right\}$? Is this correct?