I found an interesting problem, which I'm unable to solve completely:
If $\sum\limits_{0}^{\infty}{5^n.a_n}$ converges and $\sum\limits_{0}^{\infty}{(-5)^n.a_n}$ diverges, choose the correct answer:
- $\sum\limits_{0}^{\infty}{5^n.a_n}$ converges: A) absolutely, B) conditionally
- $\sum\limits_{0}^{\infty}{4^n.a_n}$ converges: A) absolutely, B) conditionally, C) does not
- $\sum\limits_{0}^{\infty}{7^n.a_n}$ converges: A) absolutely, B) conditionally, C) does not
Now, $\sum\limits_{0}^{\infty}{|(-5)^n.a_n|}=\sum\limits_{0}^{\infty}{|5^n.a_n|}$. If $\sum\limits_{0}^{\infty}{5^n.a_n}$ converges absolutely, then $\sum\limits_{0}^{\infty}{(-5)^n.a_n}$ would also converge absolutely, but the task says it diverges. Therefore, $\sum\limits_{0}^{\infty}{5^n.a_n}$ converges conditionally (B). But what about the second and third bullet points? I have no idea what to do there.