In number theory, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise co-prime.Let n1, ..., nk be integers greater than 1, which are often called moduli or divisors. Let us denote by N the product of the ni.
The Chinese remainder theorem asserts that if the ni are pairwise coprime, and if a1, ..., ak are integers such that 0 ≤ ai < ni for every i, then there is one and only one integer x, such that 0 ≤ x < N and the remainder of the Euclidean division of x by ni is ai for every i.
This may be restated as follows in term of congruences: If the ni are pairwise coprime, and if a1, ..., ak are any integers, then the system
\begin{aligned}x&\equiv a_{1}{\pmod {n_{1}}}\\&\,\,\,\vdots \\x&\equiv a_{k}{\pmod {n_{k}}},\end{aligned}
has a solution, and any two solutions, say x1 and x2, are congruent modulo N, that is, x1 ≡ x2 (mod N).
[Wikipedia]
I have already tried thinking about the case of it's $mod$ $2$, but can't really think about anything else. Can anyone help please?