Problem Prove that the inverse operator $\text{Inv}:A \mapsto A^{-1}$ (where $A$ is an $n\times n$ invertible matrix) is continuous
Context : I'm trying to do the problem $5.32$ (Pugh, 2nd). The alternative $(c)$ asks to show that the inverse operator $\text{Inv}:A \mapsto A^{-1}$ is a homeomorphism $G$ onto $G$.
Question 1 is the following approach correct ?
For a given $\epsilon>0$ we have that
\begin{align} \rvert\rvert Y^{-1} - X^{-1} \rvert\rvert &=\; \rvert\rvert Y^{-1}\;(Id-YX^{-1}) \rvert\rvert \\ &\leq\; \rvert\rvert Y^{-1} \rvert\rvert \; \rvert\rvert Id-Y X^{-1}\rvert\rvert \\ &=\; \rvert\rvert Y^{-1} \rvert\rvert \; \rvert\rvert (X-Y)X^{-1} \rvert\rvert \\ &\leq\; \rvert\rvert Y^{-1} \rvert\rvert \; \rvert\rvert X^{-1} \rvert\rvert \; \rvert\rvert X-Y \rvert\rvert \end{align}
Thus we just have to choose $\rvert\rvert X-Y \rvert\rvert < \frac{\epsilon}{\rvert\rvert Y^{-1} \rvert\rvert \; \rvert\rvert X^{-1} \rvert\rvert}$ which goes to zero because both $Y^{-1}, X^{-1}$ are invertible matrices implying they never vanish.