Given a matrix \begin{equation} M = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \end{equation} and $a,b,c$ are not all equal and are all positive. We HAVE That \begin{equation} Det(M)=a^3+b^3+c^3-3abc>0 \end{equation} where the inquality is true by AM-GM inequality.
Now if we perturb the matrix a little bit, say \begin{equation} M_1 = \begin{bmatrix} a_1 & b_1 & c_1 \\ c_2 & a_2 & b_2 \\ b_3 & c_3 & a_3 \end{bmatrix} \end{equation} where the relative order remains unchanged, say $\forall i, j, k\in\{1,2,3\}$, $0<a_i<b_j<c_k$ if previously $a<b<c$, I want to show a similar positive determinant \begin{equation} Det(M_1)=a_1a_2a_3+b_1b_2b_3+c_1c_2c_3-a_1b_2c_3-a_2b_3c_1-a_3b_1c_2>0 \end{equation}