Let $M_{ij}={2i\choose j}$ and let ${\mathbf M}_n$ be the $ (n+1) \times (n+1)$ matrix with entries $M_{ij}$ for $i=0,\cdots, n$ and $j=0,\cdots, n$.
Notice that the matrix ${\mathbf M}_n$ includes the $0^{th}$ row and column, but removing these does not effect the determinant, as noted in comments.
We wish to show that: $$2^{n+1}{\rm Det}({\mathbf M}_{n})={\rm Det}({\mathbf M}_{n+1}),$$
as we may then conclude by induction that ${\rm Det}({\mathbf M}_{n})=2^{n(n+1)/2}$, as conjectured in comments.
The usual recurrence relation for Pascal's triangle, iterated twice, tells us that $$M_{(i+1)j}= M_{ij}+2M_{i(j-1)}+M_{i(j-2)}.\qquad[1]$$
Take the final column of ${\mathbf M}_n$, double it, and add the column to the left to it. Then take the second to last column, double it and add the column to the left of it. Continue doing this to each column in turn, working from right to left. When you get to the leftmost column, just double it. Call the resulting matrix $\mathbf{A}$.
Let $\vec{R}_i$ denote the row: $$(M_{i1} M_{i2}\cdots M_{i(n+1)})$$
Then from $[1]$ we know that $2M_{i(j-1)}+M_{i(j-2)}=M_{(i+1)j}- M_{ij}$, so
$${\mathbf A}=\left(
\begin{array}{ccc}
-&\vec{R}_1-\vec{0}&-\\
-&\vec{R}_2-\vec{R}_1&-\\
-&\vdots&-\\
-&\vec{R}_{n+1}-\vec{R}_n&-
\end{array}
\right)$$
As we doubled $n+1$ columns, in the process of constructing ${\mathbf A}$ from ${\mathbf M}_n$, we know: $${\rm Det}({\mathbf A})=2^{n+1}{\rm Det}({\mathbf M}_{n}).$$
Now add the first row of ${\mathbf A}$ to the second, then add the new second row to the third and so on, to obtain:$$
\left(
\begin{array}{ccc}
-&\vec{R}_1&-\\
-&\vec{R}_2&-\\
-&\vdots&-\\
-&\vec{R}_{n+1}&-
\end{array}
\right)$$
Finally add a row of zeroes at the top, and a column of ones on the left, and we have ${\mathbf M}_{n+1}$.
We conclude:$$2^{n+1}{\rm Det}({\mathbf M}_{n})={\rm Det}({\mathbf A})={\rm Det}({\mathbf M}_{n+1}),$$
as required.
Note, the exact same argument shows that if we take rows of Pascal's triangle which are multiples of $k$, instead of even ones, the determinant of the resulting matrix is: $k^{n(n+1)/2}$.
Finally, here is an illustration of the argument for $n=2$:
$${\mathbf M}_2=\left(\begin{array}{ccc}1&0&0\\
1&2&1\\
1&4&6
\end{array}\right)$$
Doubling columns and adding column on left (right to left):$$
\left(\begin{array}{ccc}1&0&0\\
1&2&1\\
1&4&6
\end{array}\right)
\to
\left(\begin{array}{ccc}1&0&0\\
1&2&4\\
1&4&16
\end{array}\right)
\to
\left(\begin{array}{ccc}
1&1&0\\
1&5&4\\
1&9&16
\end{array}\right)
\to
\left(\begin{array}{ccc}
2&1&0\\
2&5&4\\
2&9&16
\end{array}\right)
$$
Thus determinant doubled 3 times.
Adding each row to row below (top to bottom):
$$
\left(\begin{array}{ccc}
2&1&0\\
2&5&4\\
2&9&16
\end{array}\right)
\to
\left(\begin{array}{ccc}
2&1&0\\
4&6&4\\
2&9&16
\end{array}\right)
\to
\left(\begin{array}{ccc}
2&1&0\\
4&6&4\\
6&15&20
\end{array}\right)
$$
Adding row of zeroes to top and column of ones to left:
$$
\left(\begin{array}{ccc}
2&1&0\\
4&6&4\\
6&15&20
\end{array}\right)
\to
\left(\begin{array}{ccc}
0&0&0\\
2&1&0\\
4&6&4\\
6&15&20
\end{array}\right)
\to
\left(\begin{array}{cccc}
1&0&0&0\\
1&2&1&0\\
1&4&6&4\\
1&6&15&20
\end{array}\right)={\mathbf M}_3
$$
So ${\rm Det}({\mathbf M}_3)=8{\rm Det}({\mathbf M}_2)$.
\mathbb
for individual items, but for large structures, like the set of integers, the reals, etc. You can use just $M,$ or $\mathbf M$ (\mathbf M
) for a single matrix. – Thomas Andrews Jul 06 '21 at 00:04