Substitute $t=\pi x$ and integrate by parts twice
\begin{align}
\int_0^{1/2} x^{2n}\ln(\sin \pi x)\>dx
= &\>-\frac1{\pi^{2n+1}(2n+1)(2n+2)}\int_0^{\pi/2} t^{2n+2}\csc^2 t\>dt\\
\end{align}
Then, integrate
\begin{align}
I_m =&\> \int_0^{\pi/2} t^{2m}\csc^2 t\>dt
\overset{y=e^{i t}}= -\frac4{(-1)^{m}i }\int_1^i \frac{y\ln^{2m}y}{(1-y^2)^2} dy \\
=&\> -\frac4{(-1)^{m} i}\left( \int_0^1 \frac{iy\ln^{2m}(iy)}{(1+y^2)^2} d(iy) + \int_1^0 \frac{y\ln^{2m}y}{(1-y^2)^2} dy\right)\\
\overset{y^2\to y}=&\> \frac2{(-1)^{m} i }\left( \int_0^1 \frac{(\frac{i\pi}2+\frac12\ln y)^{2m}}{(1+y)^2} dy - \int_0^1 \frac{(\frac1{2}\ln y)^{2m}}{(1-y)^2} dy\right)\\
\end{align}
and, for its real value, retain only the odd terms of the binomial expansion of $(\frac{i\pi}2+\frac12\ln y)^{2m}$, i.e.
\begin{align}
I_m = & \frac2{(-1)^{m} }\sum_{j=1}^m \binom{2m}{2j-1} (\frac{\pi}2)^{2(m-j)+1}\frac{ (-1)^{m-j}}{2^{2j-1} }\int_0^1 \frac{\ln^{2j-1} y}{(1+y)^2}dy\\
\end{align}
Recognize $\int_0^1 \frac{\ln y}{(1+y)^2}dy=-\ln2$ and
$ \int_0^1 \frac{\ln^{s} y}{(1+y)^2} dy
\overset{s>1}=(-1)^s(1-\frac1{2^{s-1}})s!\zeta(s)$
to arrive at
\begin{align}
I_m =&\frac{m\pi^{2m-1}}{2^{2m-2}}\ln2
-\frac{(2m)!}{2^{2m-1} }\sum_{j=2}^m \frac{ (-1)^{j} \pi^{2m-2j+1}}{(2m-2j+1)!}\left(1-\frac1{2^{2j-2}}\right)\zeta(2j-1)
\end{align}
Then
\begin{align}
\int_0^{1/2} x^{2n}\ln(\sin \pi x)\>dx
= &\>-\frac1{\pi^{2n+1}(2n+1)(2n+2)}I_{n+1}
\end{align}
Listed below are some sample results based on the general form derived above
\begin{align}
& \int_0^{1/2} \ln(\sin \pi x)\>dx
=-\frac1{2\pi}I_1 = -\frac12\ln2\\
& \int_0^{1/2} x^2 \ln(\sin \pi x)\>dx
=-\frac1{12\pi^3}I_2 = -\frac1{24}\ln2+\frac3{16\pi^2}\zeta(3)\\
& \int_0^{1/2} x^4 \ln(\sin \pi x)\>dx
=-\frac1{30\pi^5}I_3 = -\frac1{160}\ln2+\frac3{32\pi^2}\zeta(3)- \frac{45}{64\pi^4}\zeta(5)\\
& \int_0^{1/2} x^6 \ln(\sin \pi x)\>dx
=-\frac1{56\pi^7}I_4 = \>\cdots \cdots
\end{align}