I think Weierstrass function is a counterexample.
Also, consider the following example:
Let $f:[0, \frac{1}{12}] \rightarrow {\mathbb R}$ be defined the following way:
$f(0.a_1a_2\ldots a_n\ldots)=0.b_1b_2b_3\ldots b_n\ldots$
where $b_i=0$ if $a_i=a_{i+1}$ and $b_i=1$ otherwise.
Then for each $x$ and each $\epsilon_1, \epsilon_2 >0$ it is easy to find a $y$ so that $0< |x-y| < \epsilon_1$ and $|f(x)-f(y)|<\epsilon_2$.
This shows that $f$ is not increasing and that the limit is $\geq 0$.
P.S. This is actually the first example of continuous non-differentiable function I saw.
Edited: The following example is actually easier to work with:
If we change a litle the function, namely $b_i=0$ if $a_i-a_{i+1}\in \{0, \pm 1 , \pm 9\}$ and $b_i=1$ otherwise it is easy to show that for each $x$ and each $\epsilon>0$ it we can find a $y$ so that $0< |x-y| < \epsilon$ and $f(x)=f(y)$.
This simple fact ensures that the function is a counterexample.
Added Here are the worked details, change a little more the function to make everything work smootly:
Consider the following example:
Let $f:[0, \frac{1}{2}] \rightarrow {\mathbb R}$ be defined the following way:
$f(0.a_1a_2\ldots a_n\ldots)=0.b_1b_2b_3\ldots b_n\ldots$
where $b_i=0$ if $a_{2i-1}-a_{2i} \in \{0, \pm 1 , \pm 9\}$ and $b_i=1$ otherwise.
To make things clear, whenever a number $x$ has two decimal representations we use the $.a_1a_2\ldots a_n0000.000\ldots$ one.
We show that for each $x \in [0, \frac{1}{2}]$ and each $\epsilon >0$ we can find a $y$ so that $0< |x-y| < \epsilon$ and $f(x)=f(y)$.
Pick an $m$ so that $\frac{1}{10^{2m}} < \epsilon$.
Let $x=.a_1a_2\ldots a_n\ldots$.
We define $y=.a_1a_2\ldots a_{2m}ba_{2m+2}\ldots$ where
$$b=\begin{cases}
a_{2m+2} & \text{if $a_{2m+1}-a_{2m+2} \in \{\pm 1 , \pm 9\}$} \\
1 & \text{if $a_{2m+1}=a_{2m+2}=0$} \\
a_{2m+1}-1 & \text{if $a_{2m+1}=a_{2m+2} \neq 0$} \\
a_{2m+1}+2 & \text{if $a_{2m+1} \in \{0,1\}$ and $a_{2m+1}-a_{2m+2} \notin \{0, \pm 1 , \pm 9\}$} \\
a_{2m+1}-2 & \text{otherwise}
\end{cases} $$
We only change $x$ in the $2m+1$ possition no matter what $a_{2m+1}, a_{2m+2}$ are we have at least one choice left for $b$ to produce the same value of the function.
Then $y \neq x$, $|y-x|\leq \frac{1}{10^{2m}}$ and $f(x)=f(y)$. This shows both that the functions is not increasing and that
$$\limsup_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \geq 0 \,.$$