Q:prove $1=2$ ?
method1:-
let us consider $x=1$
then $x=x^2$
$x-1 =(x^2)-1$
$x-1=(x-1)(x+1)$
$1=x+1$
finally $1=2$
i have little confusion here, is the mistake is considering $x=1$ or else any thing other than this.
method2:-
$-2=-2$
$1-3=4-6$
$(1^2)-(\frac{2*1*3}{2})=(2^2)-(\frac{2*2*3}{2})$
$(1^2)-(\frac{2*1*3}/2)+((\frac{3}{2})^2)=(2^2)-(\frac{2*2*3}{2})+((\frac{3}{2})^2)$
$(1-\frac{3}{2})^2=(2-\frac{3}{2})^2$
$1-\frac{3}{2}=2-\frac{3}{2}$ [here the formula if $x^n=y^n$ then $x=y$ is failed]
$1=2$
point out the mistakes in above two methods exactly and please explain