I'm looking for a hint of how to show that: \begin{align*} \int_0^\infty e^{-ax}J_v\left(bx\right)dx=\frac{\left(\sqrt{a^2+b^2}-a\right)^v}{b^v\sqrt{a^2+b^2}},\qquad \Re v>-1,\quad a>0,\quad b>0, \end{align*} where $J_v$ is the Bessel function of the first kind of order $v$.
Two of my approaches, which didn't lead me to the result, are:
- (The motivation for this approach is this) Use the integral representation: \begin{align*} J_v(z)=\frac{1}{2\pi}\int_{-\pi}^\pi e^{i\left(v\theta-z\sin\theta\right)}d\theta-\frac{\sin v\pi}{\pi}\int_0^\infty e^{-z\sinh t-vt}dt,\qquad \Re z>0, \end{align*} apply Fubini's Theorem, and after a substitution I arrived at: \begin{align*} \int_0^\infty e^{-ax}J_v\left(bx\right)dx=\frac{1}{\pi i}\oint_{|z|=1}\frac{z^v}{bz^2+2az-b}dz-\frac{2\sin v\pi}{\pi}\int_1^\infty\frac{u^{-v}}{bu^2+2au-b}du, \end{align*} which I couldn't show that has de desired closed-form.
- Use the integral representation: \begin{align*} J_v\left(z\right)=\frac{1}{2\pi i}\int_{C} e^{z(t-t^{-1})/2}t^{-v-1}dt,\qquad |\arg z|<\frac{\pi}{2}, \end{align*} where $C$ is a path from $(-\infty,\delta)$, around the origin counterclockwise and back to $(-\infty,-\delta)$; that is, a reflection of a Hankel contour about the line $\Re z=0$. Using this integral representation I arrived at \begin{align*} \int_0^\infty e^{-ax}J_v\left(bx\right)dx=\frac{-1}{\pi i}\oint_D\frac{z^v}{bz^2+2az-b}du, \end{align*} where $D$ is the inversion of $C$ over the circle $|z|=1$; that is, the path resulting from $C$ under the mapping $z\to\frac{1}{z}$. I couldn't evaluate this last integral either.