let $\{X_{\alpha}\} $ be an indexed family of spaces.Let $\mathbb{T}$ be a coarsest topology such that $f_{\alpha}:A \to X_{\alpha}$ be a continuous function. Let $S_{\beta}=f^{-1}(U_{\beta})$ where $U_{\beta}$ is open in $X_{\beta}$ then show that $S=\cup S_{\beta}$ is a subbasis of the topology $\mathbb{T}$.
How do I show that $S$ satisfies the subbasis condition? If $S$ satisfies the subbasis condition of any topology $\mathbb{T'}$ then it will be easy to conclude that $\mathbb{T'} \subset \mathbb{T}$ How to proceed after this?