Let $\Omega\subset\mathbb{R}^N$ be a bounded smooth domain and $1<p<\infty$. Suppose $$ W^{1,p}(\Omega):=\{u:\Omega\to\mathbb{R}\text{ measurable such that }\|u\|_{W^{1,p}(\Omega)}<\infty\}, $$ where $$ \|u\|_{W^{1,p}(\Omega)}=\left(\|u\|_{L^p(\Omega)}+\|\nabla u\|_{L^p(\Omega)}\right)^\frac{1}{p}. $$ Let $X\subset W^{1,p}(\Omega)$ be such that $\int_{\Omega}v\,dx =0$. Then by the Sobolev embedding theorem, $X$ is a normed linear space under the norm $$ \|u\|_{X}=\left(\int_{\Omega}|\nabla u|^p\,dx\right)^\frac{1}{p}. $$ I want to know if $X$ is a reflexive and separable Banach space under the $\|\cdot\|_X$ norm?
If so, can we obtain it from the reflexive and separable Banach space property of $W^{1,p}(\Omega)$?
Kindly help.
Thanks.