Prove that
$$ \lim_{N\to +\infty} \frac{\sum_{n=1}^{N} \left[\cos \left( n\Delta \right)\right]^2}{N} = \frac{1}{2}, {\quad \rm for\ } {m\pi} \neq \Delta \in \mathbb{R}, \quad m \in \mathbb{Z} $$
and that
$$ \lim_{N\to +\infty} \frac{\sum_{n=1}^{N} \left[\sin\left( n\Delta \right)\right]^2}{N} = \frac{1}{2}, {\quad \rm for\ } {m\pi}\neq\Delta \in \mathbb{R}, \quad m \in \mathbb{Z}. $$
PS: I have verified the above identities using MATLAB, but I fail to prove them completely with "proper" math skills.