Question: Find the irreducible decomposition of $$x^{16}+x$$ over $\mathbb{F_8}=\mathbb{F_2}[t]/(t^{3}+t+1)$.
It's easy to show that $$x^{16}+x=x(x+1)(x^{2}+x+1)(x^{4}+x+1)(x^{4}+x^{3}+1)(x^{4}+x^{3}+x^{2}+x+1)$$in $\mathbb{F_2}[x]$, but how to get the irreducible decomposition of $$(x^{4}+x^{3}+1)(x^{4}+x+1)(x^{4}+x^{3}+x^{2}+x+1)$$ over $\mathbb{F_8}$? Thanks a lot.