I've just started learning limits and calculus. While solving a limit problem from my textbook, I found a different answer.
Problem: Find $\lim\limits_{n \to \infty} (1+\frac 1 n)^n$.
(The answer is obviously $e$, but I got a different answer.)
Solution from the book:
$\lim\limits_{n \to \infty} (1+\frac 1 n)^n=\lim\limits_{n \to \infty} \{1+\frac n {1!} \cdot \frac 1 n +\frac {n(n-1)}{2!}\cdot (\frac 1 n)^2+\frac{n(n-1)(n-2)}{3!}\cdot (\frac 1 n)^3+\dots \dots \}$
$=\lim\limits_{n \to \infty}\{1+\frac{1}{1!}+\frac{n^2(1-\frac 1 n)(1-\frac 2 n)}{2!} \cdot \frac 1 {n^2}+\frac{n^3(1-\frac 1 n)(1-\frac 2 n)}{3!}\cdot (\frac 1 n)^3+ \dots \dots \}$
$=\lim\limits_{n \to \infty}\{1+\frac{1}{1!}+\frac{(1-\frac 1 n)}{2!}+\frac{(1-\frac 1 n)(1-\frac 2 n)}{3!}+\dots \dots \}$
$=1+\frac 1 {1!} +\frac{(1-0)}{2!}+\frac{(1-0)(1-0)}{3!}+\dots \dots$
$=1+\frac 1 {1!} +\frac 1 {2!}+\frac 1 {3!}+ \dots \dots$
$=\color{green}{\boxed{e}}$
My solution:
We know that $\frac 1 n =0$ as $n$ approaches $+\infty$ ( this fact has also been used in the first solution) and $n$- th power of $1$ is $1$.
So, $\lim\limits_{n \to \infty} (1+\frac 1 n)^n=\lim\limits_{n \to \infty} (1+0)^n=\color{red}{\boxed{1}}$.
I don't find any mistake in my solution. So, what's wrong here?