I've already proved, that there are no non-trivial subgroups with a trivial intersection.
E.g. $H,G$ are subgroups in $F$, $\dfrac{a}{b} \in H$ and $\dfrac{c}{d} \in G$, $\dfrac{a}{b}+\dfrac{a}{b}+...+\dfrac{a}{b}=\dfrac{ab}{b} \in H,a \in H$ $a+a+...+a=ac \in H$. Same for $c \in G$
I guess, I need to show, that if $F \simeq G \times H$ ,then there are $H_{1} \le H, G_{1} \le G: H_{1} \cap G_{1} = \{e\} $ and $H_{1} \simeq H,G_{1} \simeq G$
No idea how to do it.