Propositions
Let $ \{ A_{n}: n \in \mathbb{N} \} $ be a sequence of sets such that $A_{n} \rightarrow A $. And let $ \{ B_{n}: n \in \mathbb{N} \} $ be a sequence of sets such that $B_{n} \rightarrow B $.
then
1.$\lim_{n\to \infty} A_{n}\cap B_{n} = A\cap B $.
2.$\lim_{n\to \infty} A_{n}-B_{n} = A-B $.
In order to prove that $C_{n} \to C $, where $ \{ C_{n}:n \in \mathbb{N} \}$ is a sequence of sets, I have to show that
$ \limsup C_{n} = \liminf C_{n} = C $.
i.e,
$\liminf C_{n} = \cup_{N=1}^{\infty} \cap_{n = N}^{\infty} C_{n} = C \ \ \ \ \ $ and
$\limsup C_{n} = \cap_{N=1}^{\infty} \cup_{n = N}^{\infty} C_{n} = C \ \ \ \ \ $
but when I define $C_{n} = A_{n} \cap B_{n} $ or $C_{n} = A_{n} - B_{n} $, I don't know how to compute the $\limsup C_{n}$ and the $\liminf C_{n}$.
Questions:
- Do you know a counterexample for this propositions?
- Do you know how to prove them?.
thanks in advanced.