Let $X$ be a nonnegative random variable with continuous distribution $F$. And let $Y$ be a random variable with CDF \begin{equation} G(y) = \begin{cases} 1- \alpha\int_{y}^{\infty}(1- F(x) )dx, &y>0 \\ 0, &y \leq 0, \end{cases} \end{equation} where $\alpha = \frac{1}{E(X)}$.
Here is my attempt:
$$ E(Y) =\int_{0}^{\infty} [1-G(y)]dy = \int_{0}^{\infty} [1-\{ 1-\alpha \int_{y}^{\infty}(1- F(x)) dx \} ]dy = \alpha \int_{0}^{\infty} \int_{y}^{\infty}(1- F(x) )dxdy. $$
But at this point I'm stuck, I do not know how to proceed. Do you know how compute $E(Y)$ using this formula? or Do you know other way to compute $E(Y)$?