Kinda morbid mate. Nevertheless. If the chances of survival are $p_i$ for $i=1,2,\dots,6$, then the chance of
- only the $i$-th person surviving is $p_i\prod_{i\neq j}(1-p_j)$
- exactly the $i$-th and $j$-th person surviving is $p_ip_j\sum_{\substack{z\neq i\\ z\neq j}}(1-p_z)$
- exactly the $i$-th, $j$-th, $k$-th person surviving $p_ip_jp_k\prod_{u\in{1,2,\dots,6}\setminus\left\{i,j,k\right\}}(1-p_u)$
So the probability of at most 3 surivals i.e. at least 3 deaths is the sum of all the above. You can select $i$ in $6$ ways in the first case, $i$ and $j$ in $\binom{6}{2}$ ways the second case, and $i,j,k$ in $\binom{6}{3}$ ways in the third case, then sum them all up. The cases are mutually exclusive as the surivors differ.
Edit: if you fancy Python:
from sympy import *
import itertools
p_1, p_2, p_3, p_4, p_5, p_6 = symbols('p_1 p_2 p_3 p_4 p_5 p_6')
s = [p_1,p_2,p_3,p_4,p_5,p_6]
pairs = itertools.combinations(s,2)
triples = itertools.combinations(s,3)
prodneg = prod([1-y for y in s])
def one(x):
return x/(1-x)*prodneg
def two(i,j):
return i*j/(1-i)/(1-j)*prodneg
def three(i,j,k):
return i*j*k/(1-i)/(1-j)/(1-k)*prodneg
allones = sum([one(x) for x in s])
alltwos = sum(two(i[0],i[1]) for i in pairs)
allthrees = sum(three(i[0],i[1],i[2]) for i in triples)
atleastthreedeaths = allones+alltwos+allthrees
I'm sorry if you are a programmer and I just made your eyes bleed.
Your final formula is the atrocious
$$p_{1} p_{2} p_{3} \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{2} p_{4} \left(1 - p_{3}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{2} p_{5} \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{1} p_{2} p_{6} \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{1} p_{2} \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{3} p_{4} \left(1 - p_{2}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{3} p_{5} \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{1} p_{3} p_{6} \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{1} p_{3} \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{4} p_{5} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{6}\right) + p_{1} p_{4} p_{6} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) + p_{1} p_{4} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{1} p_{5} p_{6} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) + p_{1} p_{5} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{1} p_{6} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{1} \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{2} p_{3} p_{4} \left(1 - p_{1}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{2} p_{3} p_{5} \left(1 - p_{1}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{2} p_{3} p_{6} \left(1 - p_{1}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{2} p_{3} \left(1 - p_{1}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{2} p_{4} p_{5} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{6}\right) + p_{2} p_{4} p_{6} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) + p_{2} p_{4} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{2} p_{5} p_{6} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) + p_{2} p_{5} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{2} p_{6} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{2} \left(1 - p_{1}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{3} p_{4} p_{5} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{6}\right) + p_{3} p_{4} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{5}\right) + p_{3} p_{4} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{3} p_{5} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{4}\right) + p_{3} p_{5} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{3} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) + p_{3} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{4} p_{5} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) + p_{4} p_{5} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{6}\right) + p_{4} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) + p_{4} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{5}\right) \left(1 - p_{6}\right) + p_{5} p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) + p_{5} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{6}\right) + p_{6} \left(1 - p_{1}\right) \left(1 - p_{2}\right) \left(1 - p_{3}\right) \left(1 - p_{4}\right) \left(1 - p_{5}\right)$$