Bonus: Differentiate both sides of $\int_0^1 x^{2n-1}\ln(1-x)dx=-\frac{H_{2n}}{2n}$, we get
$$\int_0^1 x^{2n-1}\ln(x)\ln(1-x)dx=\frac{H_{2n}}{4n^2}+\frac{H_{2n}^{(2)}}{2n}-\frac{\zeta(2)}{2n}.$$
Multiply both sides by $\frac{2n\choose n}{4^nn}$ then sum up from $n=1$ to $\infty$, we obtain
$$\frac14\sum_{n=1}^\infty\frac{{2n\choose n}H_{2n}}{4^n n^3}+\frac12\sum_{n=1}^\infty\frac{{2n\choose n}H_{2n}^{(2)}}{4^n n^2}-\zeta(2)\sum_{n=1}^\infty\frac{{2n\choose n}}{4^n n^2}=\int_0^1\frac{\ln(x)\ln(1-x)}{x}\left(\sum_{n=1}^\infty\frac{{2n\choose n}x^{2n}}{4^n n}\right)dx$$
$$=\int_0^1\frac{\ln(x)\ln(1-x)}{x}\left(2\ln\left(\frac{2}{1+\sqrt{1-x^2}}\right)\right)dx$$
$$=2\ln(2)\int_0^1\frac{\ln(x)\ln(1-x)}{x}dx-2\int_0^1\frac{\ln(x)\ln(1-x)\ln(1+\sqrt{1-x^2})}{x}dx$$
$$=2\ln(2)\zeta(3)-2I.$$
The sum $\sum_{n=1}^\infty\frac{{2n\choose n}H_{2n}^{(2)}}{4^n n^2}$ is calculated by Jorge above and the sum $\sum_{n=1}^\infty\frac{{2n\choose n}H_{2n}}{4^n n^3}$ is calculated here. Collecting these two results along with using $\sum_{n=1}^\infty\frac{{2n\choose n}}{4^n n^2}=\zeta(2)-2\ln^2(2)$, we get
$$I = -2 \pi \Im \left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}-\frac12\text{Li}_4\left(\frac{1}{2}\right)+\frac{281 }{64}\zeta(4)+\frac{7}{16} \ln (2)\zeta (3)-\frac{5}{8} \ln ^2(2)\zeta(2)-\frac{1}{48} \ln ^4(2).$$