Let $x+y+z=3,x,y,z\ge 0$,show that $$\sqrt{x^2+yz+2}+\sqrt{y^2+zx+2}+\sqrt{z^2+xy+2}\ge 6$$
Additional information
I have seen the following problem:
$x,y,z>0,x+y+z=3$, prove that
$$\sqrt{x^2+y+2}+\sqrt{y^2+z+2}+\sqrt{z^2+x+2}\ge 6.$$
Without loss of generality we can let $x=\max{\{x,y,z\}}$
Proof: case 1 $x\ge y\ge z$
we can easily prove $$\sqrt{y^2+z+2}+\sqrt{z^2+x+2}\ge\sqrt{y^2+x+2}+\sqrt{z^2+z+2}$$
and $$\sqrt{x^2+y+2}+\sqrt{y^2+x+2}\ge\sqrt{x^2+x+2}+\sqrt{y^2+y+2}$$
so we have $$\sqrt{x^2+y+2}+\sqrt{y^2+z+2}+\sqrt{z^2+x+2}\ge \sqrt{x^2+x+2}+\sqrt{y^2+y+2}+\sqrt{z^2+z+2}.$$
Then use $$\sqrt{x^2+x+2}\ge\dfrac{3}{4}x+\dfrac{5}{4}$$ $$\sqrt{y^2+y+2}\ge\dfrac{3}{4}y+\dfrac{5}{4}$$ $$\sqrt{z^2+z+2}\ge\dfrac{3}{4}z+\dfrac{5}{4}$$ to get the result. Whereas the case 2 when $x\ge z\ge y$ can be proved using the same methods.
Now,I have another idea: using Holder inequality we have $$\left(\sum\sqrt{x^2+yz+2}\right)^2\left(\sum\dfrac{x^2+2yz+9}{x^2+yz+2}\right)\ge 36^3$$ $$\Longleftrightarrow \sum\dfrac{x^2+2yz+9}{x^2+yz+2}\le 1296$$
and the following link has some discussion about this problem http://www.artofproblemsolving.com/Forum/viewtopic.php?t=538230
and http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=538752&p=3097872#p3097872
and Vasc gave the hint:
$$\sum\sqrt{8(a^2+bc+2)}\ge \sum\sqrt{(3a+b+c)^2+7}\ge 12\sqrt 2$$
How prove this hint?Thank you everyone.
and my other idea is as follows:
let $a=\min(a,b,c)$ we can prove $$\sqrt{b^2+ca+2}+\sqrt{c^2+ab+2}\geq \sqrt{(b+c)^2+2a(b+c)+8-(b-c)^2}\tag{1}$$ \begin{align*} &\sqrt{a^2+bc+2}+\sqrt{(b+c)^2+2a(b+c)+8-(b-c)^2}\\ \geq &\sqrt{a^2+\frac{(b+c)^2}{4}+2}+\sqrt{(b+c)^2+2a(b+c)+8} \tag{2} \end{align*} Summing up \begin{align*} &\sum_{cyc}{\sqrt{a^2+bc+2}}\\ \geq &\sqrt{a^2+\frac{(b+c)^2}{4}+2}+\sqrt{(b+c)^2+2a(b+c)+8}\\ =&\sqrt{a^2+\frac{(3-a)^2}{4}+2}+\sqrt{(3-a)^2+2a(3-a)+8} \end{align*}
By the way: someone said $(1)$ is wrong? why? can anyone give an example? And hopefully someone can use this method to prove this inequality? Thank you very much!