I will be grateful if you would write me a solution procedure for this integral
$$\int^{\infty }_{0} {\frac{x \log x}{(1+x^2)^2}} \, dx. $$
I am sure that an antiderivative is
$$\frac{1}{4} \left( \frac{2x^2 \log x}{1+x^2}- \log(1+x^2) \right).$$
Now if I put $+\infty $ instead of $x$ I get
\begin{align*} \left[ \frac{1}{4} \left( \frac{2x^2 \log x}{1+x^2}- \log(1+x^2) \right) \right]^{\infty }_{0} &= \frac{1}{4} \left( \frac{\infty}{\infty}-\infty \right)-\frac{1}{4} \left( \frac{2 \log 1}{1}-\log 1 \right) \\ &= \frac{1}{4} \left( \frac{\infty}{\infty}-\infty \right). \end{align*}
As you can see, it is useless. Can you help me please? Thanks
Can I use this solution below?
Let $$I=\frac{1}{4} \left( \frac{2x^2 \log x}{1+x^2}- \log(1+x^2) \right).$$
Now if I calculate the limit of I i get: $$\lim_{x\to\infty}I=0$$
So the final result is \begin{align*} \left[ \frac{1}{4} \left( \frac{2x^2 \log x}{1+x^2}- \log(1+x^2) \right) \right]^{\infty }_{0}=0 \end{align*}
$$ \frac{1}{4}\left(\frac{2 x^2 \ln x}{1 + x^2} - \ln(1 + x^2)\right) $$
– gt6989b Jun 11 '13 at 15:48