Given a real number $a > 0$, I need to find $$ \lim_{n \to \infty} \left( \int_0^a e^{x^2/n} dx\right)^n $$
I really have no idea where to start, should I write down the function below the integral and somehow use the dominant convergence theorem?
Given a real number $a > 0$, I need to find $$ \lim_{n \to \infty} \left( \int_0^a e^{x^2/n} dx\right)^n $$
I really have no idea where to start, should I write down the function below the integral and somehow use the dominant convergence theorem?
$$I_n=\int_{0}^a e^{x^2/n}dx =\sum_{k=0}^\infty \frac{a^{2k+1}}{(2k+1)n^k k!}$$
This converges to $a$ as $n\to\infty.$ In particular, if $0<a<1$ $I_n^n\to 0,$ and if $a>1,$ then $I_n^n\to\infty.$
So the only interesting case is $a=1.$
Then $n(I_n-1)\to \frac{1}{3}.$
So, by the Lemma here, $I^n_n\to e^{1/3}.$
If $a<1,$ then
$$\left (\int_0^a e^{x^2/n}\, dx \right)^n < (a\cdot e^{1/n})^n = a^n\cdot e \to 0.$$
If $a>1,$ then as Thomas Andrews pointed out, we have
$$\left(\int_0^a e^{x^2/n}\,dx\right)^n > \left(\int_0^a 1\,dx\right)^n = a^n \to \infty.$$
For $a=1,$ let's use $e^u= 1 +u + o(u),$ which follows from the definition of the derivative of $e^u$ at $0.$ We then get
$$\int_0^1 e^{x^2/n}\, dx = \int_0^1 (1+x^2/n + o(1/n))\,dx$$ $$ = 1+1/(3n)+ o(1/n).$$
Raising to the $n$th power, we get $(1+1/(3n)+ o(1/n))^n \to e^{1/3}.$