0

How con I Show that $29^{41}+41^{29}$ is divisible by 35. attempt: I think it shouldn’t be difficult but not sure how to prove it.

29 is not a multiple of 5 nor of 7 same for 41.

Bill Dubuque
  • 272,048
Valent
  • 3,228
  • 1
  • 15
  • 28

2 Answers2

0

Hint

$$29\equiv -6(\mod 35)$$ $$41\equiv 6(\mod 35)$$ and $$6^2\equiv 1(\mod 35)$$

Arnaldo
  • 21,342
0

The diract way:

$29^{41} + 41^{29}$ mod $35$ = $(-6)^{41} + 6^{29}$ mod $35$ = $-6 \cdot (-6)^{40} + 6\cdot6^{28}$ mod $35$ = $-6 \cdot 36 ^{20} + 6 \cdot 36^{14}$ mod $35$ = $- 6 + 6$ mod $35$ = $0$ mod $35$

So we can see that $35$ divides $29^{41} + 41^{29}$.