$\max_{~\mathbf{X}\in \mathbb{C}^{m\times n}}~ ~~Tr(\mathbf{A}^H \mathbf{X})$
s.t. $\mathbf{X}^H \mathbf{X} = \mathbf{I}_n$, where $\mathbf{A} \in \mathbb{C}^{m\times n}$ and has full column rank.
Can we relax the = in constraint to be $\le$, and use KKT condition to solve it? On the other hand, the optimal solution seems to be related to the SVD of $\mathbf{A}$.
Update: assume the SVD of $\mathbf{A}$ to be $\mathbf{A} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^H$, then we just take $\mathbf{X}$ to be $\mathbf{X}^* = \mathbf{V}\mathbf{\Lambda}\mathbf{U}^H$, where the diagonal entries of $\mathbf{\Lambda}$ (diagonal matrix) is $\lambda_i = sign(\sigma_i)$. It can be verified that $\mathbf{X}^*$ is the optimal solution satisfying the constriant and with the optimal value to be $\sum_{i=1}^n |\sigma_i|$ (w.l.o.g., assume $n <= m$).