-3

How can one prove that $x^k\equiv x\pmod2$ for any integer $x$ and any positive integer $k>1$.

Prime Mover
  • 5,005
Safwane
  • 3,840

1 Answers1

2

If $x$ is even then obviously $x^k - x$ is even. If $x$ is odd then $x^k$ is odd, so $x^k - x$ even. Thus $x^k = x \mod 2$

Infinity_hunter
  • 5,369
  • 1
  • 10
  • 30