I want to prove that the below equation can be held.
$$\sum_{ k=1 }^{ n } \cos\left(\frac{ 2 \pi k }{ n } \right) =0, \qquad n>1 $$
Firstly I tried to check the equation with small values of $n$
$$ \text{As } n=2 $$
$$ \cos\left(\frac{ 2 \pi \cdot 1 }{ 2 } \right) + \cos\left(\frac{ 2 \pi \cdot 2 }{ 2 } \right) $$
$$ = \cos\left(\pi\right) + \cos\left(2 \pi\right) $$
$$ = -1+ 1 =0 ~~ \leftarrow~~ \text{Obvious} $$
But
$$ \text{As}~~ n=3 $$
$$ \cos\left(\frac{ 2 \pi \cdot 1 }{ 3 } \right) +\cos\left(\frac{ 2 \pi \cdot 2 }{ 3 } \right) + \cos\left(\frac{ 2 \pi \cdot 3 }{ 3 } \right) $$
$$ = \cos\left(\frac{ 2 \pi }{ 3 } \right) + \cos\left(\frac{ 4 \pi }{ 3 } \right) + \cos\left( 2\pi \right) $$
$$ = \cos\left(\frac{ 2 \pi }{ 3 } \right) + \cos\left(\frac{ 4 \pi }{ 3 } \right) + 1 =?$$
What formula(s) or property(s) can be used to prove the equation?