Can you verify the solution to the following (very simple) problem $$\lim_{x\to 1} \frac{x\cdot \sin\{x\}}{x-1},$$ where $\{\}$ is the fractional part function.
LHL = $\lim_{h \to 0^+}\frac{(1-h)\cdot \sin(1-h)}{-h} = \lim_{h \to 0^+}\frac{(1)\cdot \sin(1)}{-h}=-\infty$
RHL = $\lim_{h \to 0^+}\frac{(1+h)\cdot \sin\{1+h\}}{h} = \lim_{h \to 0^+}\frac{(1)\cdot \sin(h)}{h}=1$
Since $LHL \neq RHL$ hence limit does not exist.
Is it correct to say that LHL does not exist? Or should I say LHL exists and is $-\infty$?