1

Calculate the $n$-th order determinant:

$$\Delta= \begin{vmatrix} x&a&a&\ldots&a\\ a&x&a&\ldots&a\\ a&a&x&\ldots&a\\ \cdot&\cdot&\cdot&\ldots&\cdot\\ a&a&a&\ldots&x \end{vmatrix}$$

The answer is $\Delta=[x+a(n-1)](x-a)^{n-1}$.

If we add all the other columns to the first column, we get the first multiplicative factor of the answer, and are left with the following determinant:

$$\begin{vmatrix} 1&a&a&\ldots&a\\ 1&x&a&\ldots&a\\ 1&a&x&\ldots&a\\ \cdot&\cdot&\cdot&\ldots&\cdot\\ 1&a&a&\ldots&x \end{vmatrix}$$

How can we calculate this determinant to obtain the answer?

csmathhc
  • 330

1 Answers1

3

If the matrix $J$ is the square $n\times n$ matrix with all $1$'s as its entries, then your matrix, call it $M$, is given by $M=(x-a)I+aJ$.

The eigen values of $J$ are $n$ once and $0$, $n-1$ times, so the eigenvalues of $aJ$ are $an$ once and $0$, $n-1$ times. Therefore the eigenvalues of $(x-a)I+aJ$ are $an+x-a$ once and $x-a$, $n-1$ times.

The determinant of $M$ is the product of the eigenvalues of $M$, hence $$\Delta=[x+a(n-1)](x-a)^{n-1}$$

C Squared
  • 3,648
  • 1
  • 9
  • 32