Let $a_0=1$ and $a_n=1+\sqrt{a_{n-1}}+\sqrt{1+\sqrt{a_{n-1}}}$
I want to know if the limit of $a_n$ as n goes to infinity. $$1+\sqrt{1+\sqrt{1+\sqrt{\dots}+\sqrt{1+\sqrt{\dots}}}+\sqrt{1+\sqrt{1+\sqrt{\dots}+\sqrt{1+\sqrt{\dots}}}}}+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{\dots}+\sqrt{1+\sqrt{\dots}}}+\sqrt{1+\sqrt{1+\sqrt{\dots}+\sqrt{1+\sqrt{\dots}}}}}}$$ When I tried to find a possible answer I tried to solve $1+\sqrt{x}+\sqrt{1+\sqrt{x}}=x$. I tried for an hour so I gave up and asked WolframAlpha and it got $x≈5.04891733952231$
I'm not sure how to find out if $a_n$ converges. I think it does