Here, we present another interpretation of the principal value integral as written in the posted question
$$\text{P}\int_{-\infty}^\infty\frac{e^{-ix}}{x^n}\,dx$$
for $n\in\mathbb{N}_{>0}$.
We will rely heavily on the machinery in THIS ANSWER that I posted on the Fourier Transform of $|x|^\alpha$ for $\alpha\in \mathbb{R}$. In that answer, we defined a distribution that permits our defining the Fourier Transform of $|x|^\alpha$ for $\alpha \le -1$. In the ensuing development, we restrict $\alpha$ to the negative integers.
Proceeding, we let $n\in \mathbb{N}_{>0}$. We define the distribution $\lambda_1$ such that for any $\phi\in \mathbb{S}$ (i.e., $\phi$ is a Schwarz Space function)
$$\langle \lambda_1, \phi\rangle = \int_{|x|\le 1}\frac{\phi(x)-\sum_{m=0}^{n-1} \frac{\phi^{m}(0)}{m!}x^m}{x^{n}}\,dx\tag1$$
where we interpret the value of the integral as its Cauchy Principal Value.
Equipped with the distribution defined in $(1)$, we proceed to determine the Fourier Transform of $\psi(x)=x^{-n}$.
Denoting $\psi(x)=x^{-n}$ and $\phi\in \mathbb{S}$ and using the distribution defined in $(1)$, we see that
$$\begin{align}
\langle \mathscr{F}\{\psi\},\phi\rangle &=\langle \psi,\mathscr{F}\{\phi\}\rangle \\\\
&=\int_{-\infty}^\infty \frac1{x^n} \int_{-\infty}^\infty \phi(k)\left( e^{-ikx}-\sum_{m=0}^{|n|-1}\frac{(-ik)^m}{m!}x^m\right)\,dk\,dx\tag2\\\\
&=\frac1{(n-1)!} \int_{-\infty}^\infty \frac1x \int_{-\infty}^\infty \phi(k)(-ik)^{n-1}(e^{-ikx})\,dk\,dx\tag3\\\\
&=\frac{(-i)^{n-1}}{(n-1)!}\int_{-\infty}^\infty k^{n-1}\phi(k)\int_{-\infty}^\infty \frac{e^{-ikx}}{x}\,dx\,dk\tag4\\\\
&=\frac{(-i)^n \pi}{(n-1)!}\int_{-\infty}^\infty k^{n-1}\text{sgn}(k)\phi(k)\,dk\tag5
\end{align}$$
NOTES:
In going from $(2)$ to $(3)$, we integrated by parts $n-1$ times. Justifucation of the interchange of the order of integration in going from $(3)$ to $(4)$ is left as an exercise for the reader (See THIS ANSWER for a way forward). Finally, we note that the real part of the integrand of the inner integral in $(4)$ is odd and integrates to $0$, while the imaginary part is $-\frac{\sin(kx)}{x}$ and integrates to $-\pi \text{sgn}(k)$.
From $(5)$, we see that in distribution, the Fourier transform of $\psi(x)=x^{-n}$, $n\in \mathbb{N}_{>0}$ is
$$\mathscr{F}\{\psi\}(k)=\frac{(-i)^n \pi}{(n-1)!}k^{n-1}\text{sgn}(k)$$
Setting $k=1$, we have the result that
$$\bbox[5px,border:2px solid #C0A000]{\text{P}\int_{-\infty}^\infty \frac{e^{-ix}}{x^n}\,dx=\frac{(-i)^n\pi}{(n-1)!}}\tag6$$
where $\text{P}\int_{-\infty}^\infty \frac{e^{-ix}}{x^n}\,dx$ in $(6)$ is interpreted under the distribution defined in $(1)$. The expression in $(6)$ generalizes the result presented in Aaron Hendrickson's post for $1\le n\le 10$.